Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.01.565056

ABSTRACT

In order to improve vaccine effectiveness and safety profile of existing synthetic RNA-based vaccines, we have developed a self-amplifying RNA (saRNA)-based vaccine expressing membrane-anchored receptor binding domain (RBD) of SARS-CoV-2 S protein (S-RBD) and have demonstrated that a minimal dose of this saRNA vaccine elicits robust immune responses. Results from a recent clinical trial with 5-methylcytidine (5mC) incorporating saRNA vaccine demonstrated reduced vaccine-induced adverse effects while maintaining robust humoral responses. In this study, we investigate the mechanisms accounting for induction of efficient innate and adaptive immune responses and attenuated adverse effects induced by the 5mC-incorporated saRNA. We show that the 5mC-incorporating saRNA platform leads to prolonged and robust expression of antigen, while induction of type-I interferon (IFN-I), a key driver of reactogenicity, is attenuated in peripheral blood mononuclear cells (PBMCs), but not in macrophages and dendritic cells. Interestingly, we find that the major cellular source of IFN-I production in PBMCs is plasmacytoid dendritic cells (pDCs), which is attenuated upon 5mC incorporation in saRNA. In addition, we demonstrate that monocytes also play an important role in amplifying proinflammatory responses. Furthermore, we show that the detection of saRNA is mediated by a host cytosolic RNA sensor, RIG-I. Importantly, 5mC-incorporating saRNA vaccine candidate produced robust IgG responses against S-RBD upon injection in mice, thus providing strong support for the potential clinical use of 5mC-incorporating saRNA vaccines.

2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.04.23294493

ABSTRACT

Continuing emergence of variants of concern resulting in reduced SARS-CoV-2 vaccine efficacy necessitates additional prevention strategies. The structure of VLPCOV-01, a lipid nanoparticle-encapsulated, self-amplifying RNA COVID-19 vaccine with a comparable immune response to BNT162b2, was revised by incorporating a modified base, 5-methylcytosine to reduce reactogenicity, and an updated receptor-binding domain derived from Brazil (gamma) variant. Interim analyses of a phase 1 dose-escalation booster vaccination study with the resulting construct, VLPCOV-02, in healthy, previously vaccinated Japanese individuals (N=96) are reported (jRCT2051230005). A dose-related increase in solicited local and systemic adverse events was observed, which were generally rated mild or moderate. The most commonly occurring events were tenderness, pain, fatigue, and myalgia. Serum SARS-CoV-2 immunoglobulin titers increased during the 4 weeks post-immunization. VLPCOV-02 demonstrated a favorable safety profile compared with VLPCOV-01, with a lower frequency of adverse events and fewer fever events at an equivalent dose. These findings support further study of VLPCOV-02.


Subject(s)
Pain , Fever , Myalgia , COVID-19 , Fatigue
3.
Sydney Christian Morgan; Stefan Aigner; Catelyn Anderson; Pedro Belda-Ferre; Peter De Hoff; Clarisse A Marotz; Shashank Sathe; Mark Zeller; Noorsher Ahmed; Xaver Audhya; Nathan A Baer; Tom Barber; Bethany Barrick; Lakshmi Batachari; Maryann Betty; Steven M Blue; Brent Brainard; Tyler Buckley; Jamie Case; Anelizze Castro-Martinez; Marisol Chacón; Willi Cheung; LaVonnye Chong; Nicole G Coufal; Evelyn S Crescini; Scott DeGrand; David P Dimmock; J Joelle Donofrio-Odmann; Emily R Eisner; Mehrbod Estaki; Lizbeth Franco Vargas; Michele Freddock; Robert M Gallant; Andrea Galmozzi; Nina J Gao; Sheldon Gilmer; Edyta M Grzelak; Abbas Hakim; Jonathan Hart; Charlotte Hobbs; Greg Humphrey; Nadja Ilkenhans; Marni Jacobs; Christopher A Kahn; Bhavika K Kapadia; Matthew Kim; Sunil Kurian; Alma L Lastrella; Elijah S Lawrence; Kari Lee; Qishan Liang; Hanna Liliom; Valentina Lo Sardo; Robert Logan; Michal Machnicki; Celestine G Magallanes; Clarence K Mah; Denise Malacki; Ryan J Marina; Christopher Marsh; Natasha K Martin; Nathaniel L Matteson; Daniel J Maunder; Kyle McBride; Bryan McDonald; Michelle McGraw; Audra R Meadows; Michelle Meyer; Amber L Morey; Jasmine R Mueller; Toan T Ngo; Julie Nguyen; Viet Nguyen; Laura J Nicholson; Alhakam Nouri; Victoria Nudell; Eugenio Nunez; Kyle O'Neill; R Tyler Ostrander; Priyadarshini Pantham; Samuel S Park; David Picone; Ashley Plascencia; Isaraphorn Pratumchai; Michael Quigley; Michelle Franc Ragsac; Andrew C Richardson; Refugio Robles-Sikisaka; Christopher A Ruiz; Justin Ryan; Lisa Sacco; Sharada Saraf; Phoebe Seaver; Leigh Sewall; Elizabeth W Smoot; Kathleen M Sweeney; Chandana Tekkatte; Rebecca Tsai; Holly Valentine; Shawn Walsh; August Williams; Min Yi Wu; Bing Xia; Brian Yee; Jason Z Zhang; Kristian G Andersen; Lauge Farnaes; Rob Knight; Gene W Yeo; Louise C Laurent.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.25.21257885

ABSTRACT

Background: Successful containment strategies for SARS-CoV-2, the causative virus of the COVID-19 pandemic, have involved widespread population testing that identifies infections early and enables rapid contact tracing. In this study, we developed a rapid and inexpensive RT-qPCR testing pipeline for population-level SARS-CoV-2 detection, and used this pipeline to establish a clinical laboratory dedicated to COVID-19 testing at the University of California San Diego (UCSD) with a processing capacity of 6,000 samples per day and next-day result turnaround times. Methods and findings: Using this pipeline, we screened 6,786 healthcare workers and first responders, and 21,220 students, faculty, and staff from UCSD. Additionally, we screened 6,031 preschool-grade 12 students and staff from public and private schools across San Diego County that remained fully or partially open for in-person teaching during the pandemic. Between April 17, 2020 and February 5, 2021, participants provided 161,582 nasal swabs that were tested for the presence of SARS-CoV-2. Overall, 752 positive tests were obtained, yielding a test positivity rate of 0.47%. While the presence of symptoms was significantly correlated with higher viral load, most of the COVID-19 positive participants who participated in symptom surveys were asymptomatic at the time of testing. The positivity rate among preschool-grade 12 schools that remained open for in-person teaching was similar to the positivity rate at UCSD and lower than that of San Diego County, with the children in private schools being less likely to test positive than the adults at these schools. Conclusions: Most schools across the United States have been closed for in-person learning for much of the 2020-2021 school year, and their safe reopening is a national priority. However, as there are no vaccines against SARS-CoV-2 currently available to the majority of school-aged children, the traditional strategies of mandatory masking, physical distancing, and repeated viral testing of students and staff remain key components of risk mitigation in these settings. The data presented here suggest that the safety measures and repeated testing actions taken by participating healthcare and educational facilities were effective in preventing outbreaks, and that a similar combination of risk-mitigation strategies and repeated testing may be successfully adopted by other healthcare and educational systems.


Subject(s)
COVID-19
4.
Sydney C. Morgan; Stefan Aigner; Catelyn Anderson; Pedro Belda-Ferre; Peter De Hoff; Clarisse Marotz; Shashank Sathe; Mark Zeller; Noorsher Ahmed; Xaver Audhya; Nathan A. Baer; Tom Barber; Bethany Barrick; Lakshmi Batachari; Maryann Betty; Steven M. Blue; Brent Brainard; Tyler Buckley; Jamie Case; Anelizze Castro-Martinez; Marisol Chacón; Willi Cheung; LaVonnye Chong; Nicole G. Coufal; Evelyn S. Crescini; Scott DeGrand; David P. Dimmock; J. Joelle Donofrio-Odmann; Emily R. Eisner; Mehrbod Estaki; Lizbeth Franco Vargas; Michelle Freddock; Robert M. Gallant; Andrea Galmozzi; Nina J. Gao; Sheldon Gilmer; Edyta M. Grzelak; Abbas Hakim; Jonathan Hart; Charlotte Hobbs; Gregory Humphrey; Nadja Ilkenhans; Marni Jacobs; Christopher A. Kahn; Bhavika K. Kapadia; Matthew Kim; Sunil Kurian; Alma L. Lastrella; Elijah S. Lawrence; Kari Lee; Qishan Liang; Hanna Liliom; Valentina Lo Sardo; Robert Logan; Michal Machnicki; Celestine G. Magallanes; Clarence K. Mah; Denise Malacki; Ryan J. Marina; Christopher Marsh; Natasha K. Martin; Nathaniel L. Matteson; Daniel J. Maunder; Kyle McBride; Bryan McDonald; Michelle McGraw; Audra R. Meadows; Michelle Meyer; Amber L. Morey; Jasmine R. Mueller; Toan T. Ngo; Viet Nguyen; Laura J. Nicholson; Alhakam Nouri; Victoria Nudell; Eugenio Nunez; Kyle O' Neill; R. Tyler Ostrander; Priyadarshini Pantham; Samuel S. Park; David Picone; Ashley Plascencia; Isaraphorn Pratumchai; Michael Quigley; Michelle Franc Ragsac; Andrew C. Richardson; Refugio Robles-Sikisaka; Christopher A. Ruiz; Justin Ryan; Lisa Sacco; Sharada Saraf; Phoebe Seaver; Leigh Sewall; Elizabeth W. Smoot; Kathleen M. Sweeney; Chandana Tekkatte; Rebecca Tsai; Holly Valentine; Shawn Walsh; August Williams; Min Yi Wu; Bing Xia; Brian Yee; Jason Z. Zhang; Kristian G. Andersen; Lauge Farnaes; Rob Knight; Gene W. Yeo; Louise C. Laurent.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3865239
SELECTION OF CITATIONS
SEARCH DETAIL